References

[1]

G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer. The ame2012 atomic mass evaluation. Chinese Physics C, 36(12):1287, December 2012. doi:10.1088/1674-1137/36/12/002.

[2]

A. C. Calder, D. M. Townsley, I. R. Seitenzahl, F. Peng, O. E. B. Messer, N. Vladimirova, E. F. Brown, J. W. Truran, and D. Q. Lamb. Capturing the fire: flame energetics and neutronization for type ia supernova simulations. The Astrophysical Journal, 656(1):313–332, February 2007. doi:10.1086/510709.

[3]

Gilles Chabrier and Alexander Y. Potekhin. Equation of state of fully ionized electron-ion plasmas. Physical Review E, 58(4):4941–4949, October 1998. doi:10.1103/PhysRevE.58.4941.

[4]

Richard H. Cyburt, A. Matthew Amthor, Ryan Ferguson, Zach Meisel, Karl Smith, Scott Warren, Alexander Heger, R. D. Hoffman, Thomas Rauscher, Alexander Sakharuk, Hendrik Schatz, F. K. Thielemann, and Michael Wiescher. The JINA REACLIB database: its recent updates and impact on type-i x-ray bursts. The Astrophysical Journal Supplement Series, 189(1):240, 2010. URL: https://stacks.iop.org/0067-0049/189/i=1/a=240.

[5]

W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and X. Xu. The ame2016 atomic mass evaluation (i). evaluation of input data; and adjustment procedures. Chinese Physics C, 41(3):030002, March 2017. doi:10.1088/1674-1137/41/3/030002.

[6]

K. Langanke and G. Martínez-Pinedo. Rate tables for the weak processes of pf-shell nuclei in stellar environments. Atomic Data and Nuclear Data Tables, 79(1):1–46, 2001. URL: https://www.sciencedirect.com/science/article/pii/S0092640X01908654, doi:10.1006/adnd.2001.0865.

[7]

Peter J. Mohr, David B. Newell, and Barry N. Taylor. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys., 88:035009, September 2016. URL: https://link.aps.org/doi/10.1103/RevModPhys.88.035009, doi:10.1103/RevModPhys.88.035009.

[8]

Kyle E. Niemeyer and Chih-Jen Sung. On the importance of graph search algorithms for DRGEP-based mechanism reduction methods. Combustion and Flame, 158(8):1439–1443, 2011. URL: https://www.sciencedirect.com/science/article/pii/S0010218010003640, doi:10.1016/j.combustflame.2010.12.010.

[9]

P. Pepiot-Desjardins and H. Pitsch. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combustion and Flame, 154(1):67–81, 2008. URL: https://www.sciencedirect.com/science/article/pii/S0010218007003264, doi:10.1016/j.combustflame.2007.10.020.

[10]

T. Rauscher. Nuclear partition functions at temperatures exceeding 10^10 K. The Astrophysical Journal Supplement Series, 147(2):403, August 2003. doi:10.1086/375733.

[11]

Thomas Rauscher, Friedrich-Karl Thielemann, and Karl-Ludwig Kratz. Nuclear level density and the determination of thermonuclear rates for astrophysics. Phys. Rev. C, 56:1613–1625, September 1997. URL: https://link.aps.org/doi/10.1103/PhysRevC.56.1613, doi:10.1103/PhysRevC.56.1613.

[12]

Ivo R. Seitenzahl, Dean M. Townsley, Fang Peng, and James W. Truran. Nuclear statistical equilibrium for type ia supernova simulations. Atomic Data and Nuclear Data Tables, 95(1):96–114, 2009. URL: https://www.sciencedirect.com/science/article/pii/S0092640X0800051X, doi:10.1016/j.adt.2008.08.001.

[13]

Toshio Suzuki, Hiroshi Toki, and Ken’ichi Nomoto. Electron-capture and β-decay rates for sd-shell nuclei in stellar environments relevant to high-density o–ne–mg cores. The Astrophysical Journal, 817(2):163, January 2016. doi:10.3847/0004-637X/817/2/163.

[14]

M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu. The ame2016 atomic mass evaluation (ii). tables, graphs and references. Chinese Physics C, 41(3):030003, March 2017. doi:10.1088/1674-1137/41/3/030003.

[15]

M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer. The ame2012 atomic mass evaluation. Chinese Physics C, 36(12):1603, December 2012. doi:10.1088/1674-1137/36/12/003.

[16]

A. I. Chugunov and H. E. DeWitt. Nuclear fusion reaction rates for strongly coupled ionic mixtures. Physical Review C, 80(1):014611, July 2009. arXiv:0905.3844, doi:10.1103/PhysRevC.80.014611.

[17]

A. I. Chugunov, H. E. DeWitt, and D. G. Yakovlev. Coulomb tunneling for fusion reactions in dense matter: Path integral Monte Carlo versus mean field. Physical Review D, 76(2):025028, July 2007. arXiv:0707.3500, doi:10.1103/PhysRevD.76.025028.

[18]

Naoki Itoh, Hiroshi Hayashi, Akinori Nishikawa, and Yasuharu Kohyama. Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung, and Recombination Neutrino Processes. The Astrophysical Journal Supplement Series, 102:411, February 1996. doi:10.1086/192264.

[19]

Thomas Rauscher and Friedrich-Karl Thielemann. Astrophysical Reaction Rates From Statistical Model Calculations. Atomic Data and Nuclear Data Tables, 75(1-2):1–351, May 2000. arXiv:astro-ph/0004059, doi:10.1006/adnd.2000.0834.

[20]

F. X. Timmes. Integration of Nuclear Reaction Networks for Stellar Hydrodynamics. The Astrophysical Journal Supplement Series, 124(1):241–263, September 1999. doi:10.1086/313257.

[21]

D. G. Yakovlev, L. R. Gasques, A. V. Afanasjev, M. Beard, and M. Wiescher. Fusion reactions in multicomponent dense matter. Physical Review C, 74(3):035803, September 2006. arXiv:astro-ph/0608488, doi:10.1103/PhysRevC.74.035803.