Binding Energy per Nucleon#

We can explore and plot the binding energy per nucleon to understand when fusion and fission operate.

[1]:
import pynucastro as pyna

First we’ll get all nuclei with known masses and look at the binding energy

[2]:
nuclei = pyna.get_all_nuclei()
[3]:
len(nuclei)
[3]:
3558

We see there are > 3500 nuclei with measured masses

Most tightly bound nucleus#

We can easily find the nucleus that is most tightly bound

[4]:
nuc_bound = max(nuclei, key=lambda n : n.nucbind)
nuc_bound
[4]:
Ni62

Binding energy plot#

Now we can make a plot of binding energy per nucleon for all nuclei

[5]:
As = [n.A for n in nuclei]
BEs = [n.nucbind for n in nuclei]
[6]:
import matplotlib.pyplot as plt
[7]:
fig, ax = plt.subplots()
ax.scatter(As, BEs, s=5)
ax.set_xlabel("number of nucleons")
ax.set_ylabel("binding energy per nucleon")
[7]:
Text(0, 0.5, 'binding energy per nucleon')
../_images/examples_binding-energy_12_1.png

Cleaner plot#

We see that there is quite a spread in binding energy for each nucleon count. If you look at the version of the plot on Wikipedia, it is much cleaner, because they only use a few nuclei.

We can recreate that by using the same nuclei

[8]:
nuc = ["H1", "H2", "H3", "He3", "He4",
       "Li6", "Li7", "Be9", "B10", "B11",
       "C12", "C13", "N14", "O16", "F19",
       "Ne20", "Na23", "Mg24", "Al27", "Si28",
       "P31", "S32", "Cl35", "Cl37", "K39",
       "Ar40", "Ca40", "Sc45", "Ti48", "V51",
       "Cr52", "Mn55", "Fe56", "Ni58", "Co59",
       "Ni60", "Cu63", "Zn64", "Cu65", "Zn66",
       "Zn68", "Ga68", "Ge70", "Ga71", "Ge72",
       "Ge74", "As75", "Se78", "Br79", "Se80",
       "Br81", "Kr84", "Rb85", "Sr88", "Zr90",
       "Nb93", "Zr94", "Mo95", "Mo96", "Mo98",
       "Tc98", "Ru102", "Rh103", "Pd105", "Pd106",
       "Ag107", "Pd108", "Ag109", "Cd112", "Cd114",
       "In115", "Sn118", "Sn120", "Sb121", "Sb123",
       "I127", "Te128", "Xe129", "Te130", "Xe131",
       "Xe132", "Cs133", "Ba138", "La139", "Ce140",
       "Pr141", "Nd142", "Pm145", "Eu151", "Sm152",
       "Eu153", "Sm154", "Gd156", "Gd158", "Dy162",
       "Dy163", "Dy164", "Ho165", "Er166", "Er167",
       "Er168", "Tm169", "Yb172", "Lu175", "Hf178",
       "Hf180", "Ta181", "W182", "W184", "Re185",
       "W186", "Re187", "Os190", "Ir191", "Os120",
       "Ir193", "Pt194", "Pt195", "Pt196", "Au197",
       "Hg200", "Hg202", "Tl203", "Tl205", "Pb206",
       "Pb208", "Bi209", "Po209", "At210", "Rn222",
       "Fr223", "Ra226", "Ac227", "Pa231", "Th232",
       "U235", "U238"]

new_nuc = [pyna.Nucleus(name) for name in nuc]
[9]:
As = [n.A for n in new_nuc]
BEs = [n.nucbind for n in new_nuc]
[10]:
fig, ax = plt.subplots()
ax.plot(As, BEs, marker="o", markersize="3")
ax.set_xlabel("number of nucleons")
ax.set_ylabel("binding energy per nucleon")
fig.set_size_inches((7, 6))
../_images/examples_binding-energy_18_0.png

Visualizing as function of (N, Z)#

We want to visualize the mass excess and binding energy in the \(Z\)-\(N\) plane. First let’s get the extent of \(N\) and \(Z\) in our nucleus list.

[11]:
max_Z = max(nuclei, key=lambda n : n.Z).Z
max_N = max(nuclei, key=lambda n : n.N).N

and the maximum absolute value of the mass excess (in MeV)

[12]:
dm_mag = abs(max(nuclei, key=lambda n: abs(n.dm)).dm)
dm_mag
[12]:
201.37

Now we’ll create an array to store dm(Z, N) and be(Z, N) and loop over all the nuclei and store each mass excess and binding energy / nucleon.

[13]:
import numpy as np
dm = np.zeros((max_Z+1, max_N+1))
be = np.zeros((max_Z+1, max_N+1))

We’ll initialize these to NaN so we can mask out the regions where there are no nuclei

[14]:
dm[:,:] = np.nan
be[:,:] = np.nan
[15]:
for n in nuclei:
    dm[n.Z, n.N] = n.dm
    be[n.Z, n.N] = n.nucbind

Finally, we can plot

[16]:
import matplotlib as mpl
[17]:
# mask out the regions with no nuclei
cmap = mpl.colormaps['RdYlBu']
cmap.set_bad(color='white')

fig, ax = plt.subplots()
im = ax.imshow(dm, origin="lower", cmap="RdYlBu",
               vmin=-100, vmax=100)
ax.set_xlabel("N")
ax.set_ylabel("Z")
ax.set_title("mass excess")
fig.colorbar(im, ax=ax, location="bottom", shrink=0.5)
[17]:
<matplotlib.colorbar.Colorbar at 0x7f9ebc40be10>
../_images/examples_binding-energy_31_1.png
[18]:
# mask out the regions with no nuclei
cmap = mpl.colormaps['viridis']
cmap.set_bad(color='white')

fig, ax = plt.subplots()
im = ax.imshow(be, origin="lower", cmap=cmap)
ax.set_xlabel("N")
ax.set_ylabel("Z")
ax.set_title("binding energy / nucleon")
fig.colorbar(im, ax=ax, location="bottom", shrink=0.5)
[18]:
<matplotlib.colorbar.Colorbar at 0x7f9ebc4af8d0>
../_images/examples_binding-energy_32_1.png