A He-burning Network#
Here we create a network that can be used as an \(\alpha\)-chain for modeling He detonations. It is similar in goals to the classic aprox13
network, but it has some additional rates.
[1]:
import pynucastro as pyna
We start with a list of nuclei, including all \(\alpha\)-nuclei up to \({}^{56}\mathrm{Ni}\). We also add the intermediate nuclei that would participate in \((\alpha,p)(p,\gamma)\) reactions, as well as a few more nuclei, including those identified by Shen & Bildsten 2009 for bypassing the \({}^{12}\mathrm{C}(\alpha,\gamma){}^{16}\mathrm{O}\) rate.
[2]:
nuclei = ["p",
"he4", "c12", "o16", "ne20", "mg24", "si28", "s32",
"ar36", "ca40", "ti44", "cr48", "fe52", "ni56",
"al27", "p31", "cl35", "k39", "sc43", "v47", "mn51", "co55",
"n13", "n14", "f18", "ne21", "na22", "na23"]
For our initial library, we take all of the reaclib rates that link these.
[3]:
reaclib_lib = pyna.ReacLibLibrary()
subch = reaclib_lib.linking_nuclei(nuclei)
Since we didn’t include neutrons in our list of nuclei, we are missing some potentially important rates, which we now add manually. However, we do not want to carry neutrons, so we modify the endpoints of these reactions to assume that the original \((X, n)\) reaction is immediately followed by a neutron capture.
[4]:
other_rates = [("c12(c12,n)mg23", "mg24"),
("o16(o16,n)s31", "s32"),
("o16(c12,n)si27", "si28")]
for r, mp in other_rates:
_r = reaclib_lib.get_rate_by_name(r)
_r.modify_products(mp)
subch += pyna.Library(rates=[_r])
Now we remove some rates that traditionally are not present in the “aprox”-style networks. This includes the reverse rates of \({}^{12}\mathrm{C} + {}^{12}\mathrm{C}\), \({}^{16}\mathrm{O} + {}^{12}\mathrm{C}\), and \({}^{16}\mathrm{O} + {}^{16}\mathrm{O}\). We also remove some \(\alpha\)-captures and \(p\)-captures on neutron-rich nuclei that will be eliminated when we approximate them out of the network.
[5]:
for r in subch.get_rates():
if sorted(r.products) in [[pyna.Nucleus("c12"), pyna.Nucleus("c12")],
[pyna.Nucleus("c12"), pyna.Nucleus("o16")],
[pyna.Nucleus("o16"), pyna.Nucleus("o16")]]:
subch.remove_rate(r)
rates_to_remove = ["p31(p,c12)ne20",
"si28(a,c12)ne20",
"ne20(c12,p)p31",
"ne20(c12,a)si28",
"na23(a,g)al27",
"al27(g,a)na23",
"al27(a,g)p31",
"p31(g,a)al27"]
for r in rates_to_remove:
_r = subch.get_rate_by_name(r)
subch.remove_rate(_r)
[6]:
subch
[6]:
He4 + He4 + He4 ⟶ C12 + 𝛾 [Q = 7.28 MeV] (He4 + He4 + He4 --> C12 <fy05_reaclib__>)
C12 + p ⟶ N13 + 𝛾 [Q = 1.94 MeV] (C12 + p --> N13 <ls09_reaclib__>)
C12 + He4 ⟶ O16 + 𝛾 [Q = 7.16 MeV] (C12 + He4 --> O16 <nac2_reaclib__>)
C12 + C12 ⟶ He4 + Ne20 [Q = 4.62 MeV] (C12 + C12 --> He4 + Ne20 <cf88_reaclib__>)
C12 + C12 ⟶ p + Na23 [Q = 2.24 MeV] (C12 + C12 --> p + Na23 <cf88_reaclib__>)
C12 + C12 ⟶ Mg24 + 𝛾 [Q = 13.93 MeV] (C12 + C12 --> Mg24 <cf88_reaclib__reverse>)
N13 + He4 ⟶ p + O16 [Q = 5.22 MeV] (N13 + He4 --> p + O16 <cf88_reaclib__>)
N14 + He4 ⟶ F18 + 𝛾 [Q = 4.41 MeV] (N14 + He4 --> F18 <il10_reaclib__>)
O16 + He4 ⟶ Ne20 + 𝛾 [Q = 4.73 MeV] (O16 + He4 --> Ne20 <co10_reaclib__>)
O16 + C12 ⟶ He4 + Mg24 [Q = 6.77 MeV] (O16 + C12 --> He4 + Mg24 <cf88_reaclib__>)
O16 + C12 ⟶ p + Al27 [Q = 5.17 MeV] (O16 + C12 --> p + Al27 <cf88_reaclib__>)
O16 + C12 ⟶ Si28 + 𝛾 [Q = 16.76 MeV] (O16 + C12 --> Si28 <cf88_reaclib__reverse>)
O16 + O16 ⟶ He4 + Si28 [Q = 9.59 MeV] (O16 + O16 --> He4 + Si28 <cf88_reaclib__>)
O16 + O16 ⟶ p + P31 [Q = 7.68 MeV] (O16 + O16 --> p + P31 <cf88_reaclib__>)
O16 + O16 ⟶ S32 + 𝛾 [Q = 16.54 MeV] (O16 + O16 --> S32 <cf88_reaclib__>)
F18 + He4 ⟶ p + Ne21 [Q = 1.74 MeV] (F18 + He4 --> p + Ne21 <rpsm_reaclib__>)
F18 + He4 ⟶ Na22 + 𝛾 [Q = 8.48 MeV] (F18 + He4 --> Na22 <rpsm_reaclib__>)
Ne20 + He4 ⟶ Mg24 + 𝛾 [Q = 9.32 MeV] (Ne20 + He4 --> Mg24 <il10_reaclib__>)
Ne21 + p ⟶ Na22 + 𝛾 [Q = 6.74 MeV] (Ne21 + p --> Na22 <il10_reaclib__>)
Na23 + p ⟶ He4 + Ne20 [Q = 2.38 MeV] (Na23 + p --> He4 + Ne20 <il10_reaclib__>)
Na23 + p ⟶ Mg24 + 𝛾 [Q = 11.69 MeV] (Na23 + p --> Mg24 <il10_reaclib__>)
Mg24 + He4 ⟶ Si28 + 𝛾 [Q = 9.98 MeV] (Mg24 + He4 --> Si28 <st08_reaclib__>)
Al27 + p ⟶ He4 + Mg24 [Q = 1.60 MeV] (Al27 + p --> He4 + Mg24 <il10_reaclib__>)
Al27 + p ⟶ Si28 + 𝛾 [Q = 11.59 MeV] (Al27 + p --> Si28 <il10_reaclib__>)
Si28 + He4 ⟶ S32 + 𝛾 [Q = 6.95 MeV] (Si28 + He4 --> S32 <ths8_reaclib__>)
P31 + p ⟶ He4 + Si28 [Q = 1.92 MeV] (P31 + p --> He4 + Si28 <il10_reaclib__>)
P31 + p ⟶ S32 + 𝛾 [Q = 8.86 MeV] (P31 + p --> S32 <il10_reaclib__>)
P31 + He4 ⟶ Cl35 + 𝛾 [Q = 7.00 MeV] (P31 + He4 --> Cl35 <ths8_reaclib__>)
S32 + He4 ⟶ Ar36 + 𝛾 [Q = 6.64 MeV] (S32 + He4 --> Ar36 <ths8_reaclib__>)
Cl35 + p ⟶ He4 + S32 [Q = 1.87 MeV] (Cl35 + p --> He4 + S32 <il10_reaclib__>)
Cl35 + p ⟶ Ar36 + 𝛾 [Q = 8.51 MeV] (Cl35 + p --> Ar36 <il10_reaclib__>)
Cl35 + He4 ⟶ K39 + 𝛾 [Q = 7.22 MeV] (Cl35 + He4 --> K39 <ths8_reaclib__>)
Ar36 + He4 ⟶ Ca40 + 𝛾 [Q = 7.04 MeV] (Ar36 + He4 --> Ca40 <ths8_reaclib__>)
K39 + p ⟶ He4 + Ar36 [Q = 1.29 MeV] (K39 + p --> He4 + Ar36 <ths8_reaclib__>)
K39 + p ⟶ Ca40 + 𝛾 [Q = 8.33 MeV] (K39 + p --> Ca40 <lo18_reaclib__>)
K39 + He4 ⟶ Sc43 + 𝛾 [Q = 4.81 MeV] (K39 + He4 --> Sc43 <ths8_reaclib__>)
Ca40 + He4 ⟶ Ti44 + 𝛾 [Q = 5.13 MeV] (Ca40 + He4 --> Ti44 <chw0_reaclib__>)
Sc43 + p ⟶ He4 + Ca40 [Q = 3.52 MeV] (Sc43 + p --> He4 + Ca40 <ths8_reaclib__>)
Sc43 + p ⟶ Ti44 + 𝛾 [Q = 8.65 MeV] (Sc43 + p --> Ti44 <ths8_reaclib__>)
Sc43 + He4 ⟶ V47 + 𝛾 [Q = 8.24 MeV] (Sc43 + He4 --> V47 <ths8_reaclib__>)
Ti44 + He4 ⟶ Cr48 + 𝛾 [Q = 7.70 MeV] (Ti44 + He4 --> Cr48 <ths8_reaclib__>)
V47 + p ⟶ He4 + Ti44 [Q = 0.41 MeV] (V47 + p --> He4 + Ti44 <chw0_reaclib__reverse>)
V47 + p ⟶ Cr48 + 𝛾 [Q = 8.11 MeV] (V47 + p --> Cr48 <nfis_reaclib__>)
V47 + He4 ⟶ Mn51 + 𝛾 [Q = 8.66 MeV] (V47 + He4 --> Mn51 <ths8_reaclib__>)
Cr48 + He4 ⟶ p + Mn51 [Q = 0.56 MeV] (Cr48 + He4 --> p + Mn51 <ths8_reaclib__>)
Cr48 + He4 ⟶ Fe52 + 𝛾 [Q = 7.94 MeV] (Cr48 + He4 --> Fe52 <ths8_reaclib__>)
Mn51 + p ⟶ Fe52 + 𝛾 [Q = 7.38 MeV] (Mn51 + p --> Fe52 <ths8_reaclib__>)
Mn51 + He4 ⟶ Co55 + 𝛾 [Q = 8.21 MeV] (Mn51 + He4 --> Co55 <ths8_reaclib__>)
Fe52 + He4 ⟶ p + Co55 [Q = 0.83 MeV] (Fe52 + He4 --> p + Co55 <ths8_reaclib__>)
Fe52 + He4 ⟶ Ni56 + 𝛾 [Q = 8.00 MeV] (Fe52 + He4 --> Ni56 <ths8_reaclib__>)
Co55 + p ⟶ Ni56 + 𝛾 [Q = 7.17 MeV] (Co55 + p --> Ni56 <ths8_reaclib__>)
C12 ⟶ He4 + He4 + He4 [Q = -7.28 MeV] (C12 --> He4 + He4 + He4 <fy05_reaclib__reverse>)
N13 ⟶ p + C12 [Q = -1.94 MeV] (N13 --> p + C12 <ls09_reaclib__reverse>)
O16 + p ⟶ He4 + N13 [Q = -5.22 MeV] (O16 + p --> He4 + N13 <cf88_reaclib__reverse>)
O16 ⟶ He4 + C12 [Q = -7.16 MeV] (O16 --> He4 + C12 <nac2_reaclib__reverse>)
F18 ⟶ He4 + N14 [Q = -4.41 MeV] (F18 --> He4 + N14 <il10_reaclib__reverse>)
Ne20 + He4 ⟶ p + Na23 [Q = -2.38 MeV] (Ne20 + He4 --> p + Na23 <il10_reaclib__reverse>)
Ne20 ⟶ He4 + O16 [Q = -4.73 MeV] (Ne20 --> He4 + O16 <co10_reaclib__reverse>)
Ne21 + p ⟶ He4 + F18 [Q = -1.74 MeV] (Ne21 + p --> He4 + F18 <rpsm_reaclib__reverse>)
Na22 ⟶ He4 + F18 [Q = -8.48 MeV] (Na22 --> He4 + F18 <rpsm_reaclib__reverse>)
Na22 ⟶ p + Ne21 [Q = -6.74 MeV] (Na22 --> p + Ne21 <il10_reaclib__reverse>)
Mg24 + He4 ⟶ p + Al27 [Q = -1.60 MeV] (Mg24 + He4 --> p + Al27 <il10_reaclib__reverse>)
Mg24 ⟶ He4 + Ne20 [Q = -9.32 MeV] (Mg24 --> He4 + Ne20 <il10_reaclib__reverse>)
Mg24 ⟶ p + Na23 [Q = -11.69 MeV] (Mg24 --> p + Na23 <il10_reaclib__reverse>)
Si28 + He4 ⟶ p + P31 [Q = -1.92 MeV] (Si28 + He4 --> p + P31 <il10_reaclib__reverse>)
Si28 ⟶ He4 + Mg24 [Q = -9.98 MeV] (Si28 --> He4 + Mg24 <st08_reaclib__reverse>)
Si28 ⟶ p + Al27 [Q = -11.59 MeV] (Si28 --> p + Al27 <il10_reaclib__reverse>)
S32 + He4 ⟶ p + Cl35 [Q = -1.87 MeV] (S32 + He4 --> p + Cl35 <il10_reaclib__reverse>)
S32 ⟶ He4 + Si28 [Q = -6.95 MeV] (S32 --> He4 + Si28 <ths8_reaclib__reverse>)
S32 ⟶ p + P31 [Q = -8.86 MeV] (S32 --> p + P31 <il10_reaclib__reverse>)
Cl35 ⟶ He4 + P31 [Q = -7.00 MeV] (Cl35 --> He4 + P31 <ths8_reaclib__reverse>)
Ar36 + He4 ⟶ p + K39 [Q = -1.29 MeV] (Ar36 + He4 --> p + K39 <ths8_reaclib__reverse>)
Ar36 ⟶ He4 + S32 [Q = -6.64 MeV] (Ar36 --> He4 + S32 <ths8_reaclib__reverse>)
Ar36 ⟶ p + Cl35 [Q = -8.51 MeV] (Ar36 --> p + Cl35 <il10_reaclib__reverse>)
K39 ⟶ He4 + Cl35 [Q = -7.22 MeV] (K39 --> He4 + Cl35 <ths8_reaclib__reverse>)
Ca40 + He4 ⟶ p + Sc43 [Q = -3.52 MeV] (Ca40 + He4 --> p + Sc43 <ths8_reaclib__reverse>)
Ca40 ⟶ He4 + Ar36 [Q = -7.04 MeV] (Ca40 --> He4 + Ar36 <ths8_reaclib__reverse>)
Ca40 ⟶ p + K39 [Q = -8.33 MeV] (Ca40 --> p + K39 <lo18_reaclib__reverse>)
Sc43 ⟶ He4 + K39 [Q = -4.81 MeV] (Sc43 --> He4 + K39 <ths8_reaclib__reverse>)
Ti44 + He4 ⟶ p + V47 [Q = -0.41 MeV] (Ti44 + He4 --> p + V47 <chw0_reaclib__>)
Ti44 ⟶ He4 + Ca40 [Q = -5.13 MeV] (Ti44 --> He4 + Ca40 <chw0_reaclib__reverse>)
Ti44 ⟶ p + Sc43 [Q = -8.65 MeV] (Ti44 --> p + Sc43 <ths8_reaclib__reverse>)
V47 ⟶ He4 + Sc43 [Q = -8.24 MeV] (V47 --> He4 + Sc43 <ths8_reaclib__reverse>)
Cr48 ⟶ He4 + Ti44 [Q = -7.70 MeV] (Cr48 --> He4 + Ti44 <ths8_reaclib__reverse>)
Cr48 ⟶ p + V47 [Q = -8.11 MeV] (Cr48 --> p + V47 <nfis_reaclib__reverse>)
Mn51 + p ⟶ He4 + Cr48 [Q = -0.56 MeV] (Mn51 + p --> He4 + Cr48 <ths8_reaclib__reverse>)
Mn51 ⟶ He4 + V47 [Q = -8.66 MeV] (Mn51 --> He4 + V47 <ths8_reaclib__reverse>)
Fe52 ⟶ He4 + Cr48 [Q = -7.94 MeV] (Fe52 --> He4 + Cr48 <ths8_reaclib__reverse>)
Fe52 ⟶ p + Mn51 [Q = -7.38 MeV] (Fe52 --> p + Mn51 <ths8_reaclib__reverse>)
Co55 + p ⟶ He4 + Fe52 [Q = -0.83 MeV] (Co55 + p --> He4 + Fe52 <ths8_reaclib__reverse>)
Co55 ⟶ He4 + Mn51 [Q = -8.21 MeV] (Co55 --> He4 + Mn51 <ths8_reaclib__reverse>)
Ni56 ⟶ He4 + Fe52 [Q = -8.00 MeV] (Ni56 --> He4 + Fe52 <ths8_reaclib__reverse>)
Ni56 ⟶ p + Co55 [Q = -7.17 MeV] (Ni56 --> p + Co55 <ths8_reaclib__reverse>)
Finally, we replace the reverse rates from ReacLib by rederiving them via detailed balance, and including the partition functions.
[7]:
rates_to_derive = []
for r in subch.get_rates():
if r.reverse:
# this rate was computed using detailed balance, regardless
# of whether Q < 0 or not. We want to remove it and then
# recompute it
rates_to_derive.append(r)
# now for each of those derived rates, look to see if the pair exists
for r in rates_to_derive:
fr = subch.get_rate_by_nuclei(r.products, r.reactants)
if fr:
print(f"modifying {r} from {fr}")
subch.remove_rate(r)
d = pyna.DerivedRate(rate=fr, compute_Q=False, use_pf=True)
subch.add_rate(d)
modifying N13 ⟶ p + C12 from C12 + p ⟶ N13 + 𝛾
modifying O16 ⟶ He4 + C12 from C12 + He4 ⟶ O16 + 𝛾
modifying F18 ⟶ He4 + N14 from N14 + He4 ⟶ F18 + 𝛾
modifying Ne20 ⟶ He4 + O16 from O16 + He4 ⟶ Ne20 + 𝛾
modifying Na22 ⟶ p + Ne21 from Ne21 + p ⟶ Na22 + 𝛾
modifying Na22 ⟶ He4 + F18 from F18 + He4 ⟶ Na22 + 𝛾
modifying Mg24 ⟶ p + Na23 from Na23 + p ⟶ Mg24 + 𝛾
modifying Mg24 ⟶ He4 + Ne20 from Ne20 + He4 ⟶ Mg24 + 𝛾
modifying Si28 ⟶ p + Al27 from Al27 + p ⟶ Si28 + 𝛾
modifying Si28 ⟶ He4 + Mg24 from Mg24 + He4 ⟶ Si28 + 𝛾
modifying S32 ⟶ p + P31 from P31 + p ⟶ S32 + 𝛾
modifying S32 ⟶ He4 + Si28 from Si28 + He4 ⟶ S32 + 𝛾
modifying Cl35 ⟶ He4 + P31 from P31 + He4 ⟶ Cl35 + 𝛾
modifying Ar36 ⟶ p + Cl35 from Cl35 + p ⟶ Ar36 + 𝛾
modifying Ar36 ⟶ He4 + S32 from S32 + He4 ⟶ Ar36 + 𝛾
modifying K39 ⟶ He4 + Cl35 from Cl35 + He4 ⟶ K39 + 𝛾
modifying Ca40 ⟶ p + K39 from K39 + p ⟶ Ca40 + 𝛾
modifying Ca40 ⟶ He4 + Ar36 from Ar36 + He4 ⟶ Ca40 + 𝛾
modifying Sc43 ⟶ He4 + K39 from K39 + He4 ⟶ Sc43 + 𝛾
modifying Ti44 ⟶ p + Sc43 from Sc43 + p ⟶ Ti44 + 𝛾
modifying Ti44 ⟶ He4 + Ca40 from Ca40 + He4 ⟶ Ti44 + 𝛾
modifying V47 ⟶ He4 + Sc43 from Sc43 + He4 ⟶ V47 + 𝛾
modifying Cr48 ⟶ p + V47 from V47 + p ⟶ Cr48 + 𝛾
modifying Cr48 ⟶ He4 + Ti44 from Ti44 + He4 ⟶ Cr48 + 𝛾
modifying Mn51 ⟶ He4 + V47 from V47 + He4 ⟶ Mn51 + 𝛾
modifying Fe52 ⟶ p + Mn51 from Mn51 + p ⟶ Fe52 + 𝛾
modifying Fe52 ⟶ He4 + Cr48 from Cr48 + He4 ⟶ Fe52 + 𝛾
modifying Co55 ⟶ He4 + Mn51 from Mn51 + He4 ⟶ Co55 + 𝛾
modifying Ni56 ⟶ p + Co55 from Co55 + p ⟶ Ni56 + 𝛾
modifying Ni56 ⟶ He4 + Fe52 from Fe52 + He4 ⟶ Ni56 + 𝛾
modifying C12 ⟶ He4 + He4 + He4 from He4 + He4 + He4 ⟶ C12 + 𝛾
modifying O16 + p ⟶ He4 + N13 from N13 + He4 ⟶ p + O16
modifying Ne20 + He4 ⟶ p + Na23 from Na23 + p ⟶ He4 + Ne20
modifying Ne21 + p ⟶ He4 + F18 from F18 + He4 ⟶ p + Ne21
modifying Mg24 + He4 ⟶ p + Al27 from Al27 + p ⟶ He4 + Mg24
modifying Si28 + He4 ⟶ p + P31 from P31 + p ⟶ He4 + Si28
modifying S32 + He4 ⟶ p + Cl35 from Cl35 + p ⟶ He4 + S32
modifying Ar36 + He4 ⟶ p + K39 from K39 + p ⟶ He4 + Ar36
modifying Ca40 + He4 ⟶ p + Sc43 from Sc43 + p ⟶ He4 + Ca40
modifying V47 + p ⟶ He4 + Ti44 from Ti44 + He4 ⟶ p + V47
modifying Mn51 + p ⟶ He4 + Cr48 from Cr48 + He4 ⟶ p + Mn51
modifying Co55 + p ⟶ He4 + Fe52 from Fe52 + He4 ⟶ p + Co55
Now that we have our library, we can make a network. This can be a RateCollection
, PythonNetwork
, or AmrexAstroCxxNetwork
. For a SimpleCxxNetwork
or FortranNetwork
, we do not currently support partition functions, so we would need to comment out the above cell that rederives the reverse rates via detailed balance.
[8]:
net = pyna.RateCollection(libraries=[subch])
Finally, we will do the \((\alpha,p)(p,\gamma)\) approximation and eliminate the intermediate nuclei
[9]:
net.make_ap_pg_approx(intermediate_nuclei=["cl35", "k39", "sc43", "v47", "mn51", "co55"])
net.remove_nuclei(["cl35", "k39", "sc43", "v47", "mn51", "co55"])
using approximate rate S32 + He4 ⟶ Ar36 + 𝛾
using approximate rate Ar36 ⟶ S32 + He4
using approximate rate Ar36 + He4 ⟶ Ca40 + 𝛾
using approximate rate Ca40 ⟶ Ar36 + He4
using approximate rate Ca40 + He4 ⟶ Ti44 + 𝛾
using approximate rate Ti44 ⟶ Ca40 + He4
using approximate rate Ti44 + He4 ⟶ Cr48 + 𝛾
using approximate rate Cr48 ⟶ Ti44 + He4
using approximate rate Cr48 + He4 ⟶ Fe52 + 𝛾
using approximate rate Fe52 ⟶ Cr48 + He4
using approximate rate Fe52 + He4 ⟶ Ni56 + 𝛾
using approximate rate Ni56 ⟶ Fe52 + He4
removing rate S32 + He4 ⟶ Ar36 + 𝛾
removing rate S32 + He4 ⟶ p + Cl35
removing rate Cl35 + p ⟶ Ar36 + 𝛾
removing rate Ar36 ⟶ He4 + S32
removing rate Ar36 ⟶ p + Cl35
removing rate Cl35 + p ⟶ He4 + S32
removing rate Ar36 + He4 ⟶ Ca40 + 𝛾
removing rate Ar36 + He4 ⟶ p + K39
removing rate K39 + p ⟶ Ca40 + 𝛾
removing rate Ca40 ⟶ He4 + Ar36
removing rate Ca40 ⟶ p + K39
removing rate K39 + p ⟶ He4 + Ar36
removing rate Ca40 + He4 ⟶ Ti44 + 𝛾
removing rate Ca40 + He4 ⟶ p + Sc43
removing rate Sc43 + p ⟶ Ti44 + 𝛾
removing rate Ti44 ⟶ He4 + Ca40
removing rate Ti44 ⟶ p + Sc43
removing rate Sc43 + p ⟶ He4 + Ca40
removing rate Ti44 + He4 ⟶ Cr48 + 𝛾
removing rate Ti44 + He4 ⟶ p + V47
removing rate V47 + p ⟶ Cr48 + 𝛾
removing rate Cr48 ⟶ He4 + Ti44
removing rate Cr48 ⟶ p + V47
removing rate V47 + p ⟶ He4 + Ti44
removing rate Cr48 + He4 ⟶ Fe52 + 𝛾
removing rate Cr48 + He4 ⟶ p + Mn51
removing rate Mn51 + p ⟶ Fe52 + 𝛾
removing rate Fe52 ⟶ He4 + Cr48
removing rate Fe52 ⟶ p + Mn51
removing rate Mn51 + p ⟶ He4 + Cr48
removing rate Fe52 + He4 ⟶ Ni56 + 𝛾
removing rate Fe52 + He4 ⟶ p + Co55
removing rate Co55 + p ⟶ Ni56 + 𝛾
removing rate Ni56 ⟶ He4 + Fe52
removing rate Ni56 ⟶ p + Co55
removing rate Co55 + p ⟶ He4 + Fe52
looking to remove P31 + He4 ⟶ Cl35 + 𝛾
looking to remove Cl35 + He4 ⟶ K39 + 𝛾
looking to remove Cl35 ⟶ He4 + P31
looking to remove K39 ⟶ He4 + Cl35
looking to remove Cl35 + He4 ⟶ K39 + 𝛾
looking to remove K39 + He4 ⟶ Sc43 + 𝛾
looking to remove K39 ⟶ He4 + Cl35
looking to remove Sc43 ⟶ He4 + K39
looking to remove K39 + He4 ⟶ Sc43 + 𝛾
looking to remove Sc43 + He4 ⟶ V47 + 𝛾
looking to remove Sc43 ⟶ He4 + K39
looking to remove V47 ⟶ He4 + Sc43
looking to remove Sc43 + He4 ⟶ V47 + 𝛾
looking to remove V47 + He4 ⟶ Mn51 + 𝛾
looking to remove V47 ⟶ He4 + Sc43
looking to remove Mn51 ⟶ He4 + V47
looking to remove V47 + He4 ⟶ Mn51 + 𝛾
looking to remove Mn51 + He4 ⟶ Co55 + 𝛾
looking to remove Mn51 ⟶ He4 + V47
looking to remove Co55 ⟶ He4 + Mn51
looking to remove Mn51 + He4 ⟶ Co55 + 𝛾
looking to remove Co55 ⟶ He4 + Mn51
Let’s visualize the network
[10]:
comp = pyna.Composition(net.get_nuclei())
comp.set_all(0.1)
comp.set_nuc("he4", 0.95)
comp.normalize()
rho = 1.e6
T = 1.e9
fig = net.plot(rho, T, comp, outfile="subch_simple.png",
rotated=True, hide_xalpha=True, curved_edges=True,
size=(1500, 450),
node_size=500, node_font_size=11, node_color="#337dff", node_shape="s",
Z_range=(1,29))
/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/site-packages/pynucastro/rates/derived_rate.py:85: UserWarning: C12 partition function is not supported by tables: set pf = 1.0 by default
warnings.warn(UserWarning(f'{nuc} partition function is not supported by tables: set pf = 1.0 by default'))
/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/site-packages/pynucastro/rates/derived_rate.py:85: UserWarning: N13 partition function is not supported by tables: set pf = 1.0 by default
warnings.warn(UserWarning(f'{nuc} partition function is not supported by tables: set pf = 1.0 by default'))
/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/site-packages/pynucastro/rates/derived_rate.py:85: UserWarning: N14 partition function is not supported by tables: set pf = 1.0 by default
warnings.warn(UserWarning(f'{nuc} partition function is not supported by tables: set pf = 1.0 by default'))
At this point, we could write the network and use it in another code, depending on which network class we used for the construction.